Sample Integrated
Contents
Sample Integrated#
This notebook will do a simple pipeline based on fastai with transfer learning concepts using resnet architecture. Typical ideas I want to implement here
Get a working pipeline with the current dataset ( using Fastai)
Do a submission on Kaggle
Do some iterations using simple data augmentations
We will split the train dataset into 80-20 split. The idea is to have an actual measurement of model performance looking at the training data. However, trick for kaggle here is to train the model on entire training dataset before submitting results and reviewing score on the test.
Note
Big Images are not easy to fit on GPU.
Resizing big image to smaller sizes tends to loose certain features
Next ideas
Apply Digit Cleaner concept
Create Clean Dataset / Visualize and review accuracy of digit cleaner
Figure out way to do a bounding box
After that we can apply a few ideas
Apply resnet after digit cleaner ( current data had 0.93 error_rate after 1 epoch)
Do bounding box and break down dataset into individual digits. Then do clustering to 10 categories. Then use labels to calculate sum_digit
Split into individual digit images -> Resize -> Merge (permutations) into single image then train model on new dataset
Imports#
%load_ext autoreload
%autoreload 2
The autoreload extension is already loaded. To reload it, use:
%reload_ext autoreload
import torch
torch.cuda.empty_cache()
!nvidia-smi
Tue Mar 15 09:43:54 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.103.01 Driver Version: 470.103.01 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla K80 Off | 00000000:00:1E.0 Off | 0 |
| N/A 67C P0 61W / 149W | 1316MiB / 11441MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 173195 C ...da/envs/aiking/bin/python 1313MiB |
+-----------------------------------------------------------------------------+
import fastai
from fastai.vision.all import *
from fastai.vision.all import *
from fastai.vision.widgets import *
from aiking.data.external import * #We need to import this after fastai modules
import warnings
from matplotlib import cm
import shutil
import pathlib
warnings.filterwarnings("ignore")
path = untar_data("kaggle_competitions::ultra-mnist"); path
pd.Series((path).ls())
0 /Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized
1 /Landmark2/pdo/aiking/data/ultra-mnist/test_black
2 /Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated
3 /Landmark2/pdo/aiking/data/ultra-mnist/train_sample.csv
4 /Landmark2/pdo/aiking/data/ultra-mnist/sample.csv
5 /Landmark2/pdo/aiking/data/ultra-mnist/train.csv
6 /Landmark2/pdo/aiking/data/ultra-mnist/models
7 /Landmark2/pdo/aiking/data/ultra-mnist/train
8 /Landmark2/pdo/aiking/data/ultra-mnist/train_train.csv
9 /Landmark2/pdo/aiking/data/ultra-mnist/sample_black
10 /Landmark2/pdo/aiking/data/ultra-mnist/test
11 /Landmark2/pdo/aiking/data/ultra-mnist/train_black2
12 /Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped
13 /Landmark2/pdo/aiking/data/ultra-mnist/valid_train.csv
14 /Landmark2/pdo/aiking/data/ultra-mnist/ultra-mnist.zip
15 /Landmark2/pdo/aiking/data/ultra-mnist/sample_submission.csv
16 /Landmark2/pdo/aiking/data/ultra-mnist/train_black
17 /Landmark2/pdo/aiking/data/ultra-mnist/test_black2
18 /Landmark2/pdo/aiking/data/ultra-mnist/sample
19 /Landmark2/pdo/aiking/data/ultra-mnist/sample_intg.csv
20 /Landmark2/pdo/aiking/data/ultra-mnist/valid_sample.csv
dtype: object
# !mkdir {path}/'sample'
path/'sample_black_cropped_resized_integrated'
# path/'train'
Path('/Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated')
(path/"sample_black_cropped_resized_integrated").ls()
(#560) [Path('/Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated/mptgfndbad'),Path('/Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated/uznkagrqln'),Path('/Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated/gkuhpigoxr'),Path('/Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated/tvkpbnawop'),Path('/Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated/jfsumbgtsg'),Path('/Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated/efstasnumi'),Path('/Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated/dhxwgmgutm'),Path('/Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated/xbgfseogty'),Path('/Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated/ytlwuwflrt'),Path('/Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated/nphunajnco')...]
Form new train and valid df#
# df_train = pd.read_csv(path/'train_sample.csv')
# df_train['id'] = df_train['id'] + ".jpeg"
# df_train
df_sample_intg = pd.read_csv(path/"sample_intg.csv"); df_sample_intg
df_sample_train = pd.read_csv(path/"train_sample.csv"); df_sample_train
df_sample_valid = pd.read_csv(path/"valid_sample.csv"); df_sample_valid
df_sample = pd.concat([df_sample_train, df_sample_valid])
# df_sample_intg['digit_sum'] = None
df_sample_intg['dstype'] = None
# df_sample_intg.shape, df_sample_intg.join(df_sample_train.set_index('id'), on='id').shape
train_filter = df_sample_intg['id'].isin(df_sample_train.id)
valid_filter = df_sample_intg['id'].isin(df_sample_valid.id)
df_sample_intg.loc[train_filter, 'dstype'] = 'train'
df_sample_intg.loc[valid_filter, 'dstype'] = 'valid'
df_sample_intg['digit_sum'] = df_sample_intg.join(df_sample.set_index('id'), on='id')['digit_sum']
df_sample_intg
# df_sample_intg.loc[valid_filter, 'digit_sum'] = df_sample_intg[valid_filter].join(df_sample_valid.set_index('id'), on='id')['digit_sum']
# df_sample_intg.dtypes, df_sample_train.dtypes
path | fname | id | dstype | digit_sum | |
---|---|---|---|---|---|
0 | /Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated/mptgfndbad/mptgfndbad_doocaoebo.jpeg | mptgfndbad_doocaoebo.jpeg | mptgfndbad | train | 9 |
1 | /Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated/mptgfndbad/mptgfndbad_ocboeoaod.jpeg | mptgfndbad_ocboeoaod.jpeg | mptgfndbad | train | 9 |
2 | /Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated/mptgfndbad/mptgfndbad_cdaoooebo.jpeg | mptgfndbad_cdaoooebo.jpeg | mptgfndbad | train | 9 |
3 | /Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated/mptgfndbad/mptgfndbad_bacoooeod.jpeg | mptgfndbad_bacoooeod.jpeg | mptgfndbad | train | 9 |
4 | /Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated/mptgfndbad/mptgfndbad_oocabodoe.jpeg | mptgfndbad_oocabodoe.jpeg | mptgfndbad | train | 9 |
... | ... | ... | ... | ... | ... |
5029 | /Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated/tvqvvpnnpf/tvqvvpnnpf_dcboaoooo.jpeg | tvqvvpnnpf_dcboaoooo.jpeg | tvqvvpnnpf | train | 21 |
5030 | /Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated/tvqvvpnnpf/tvqvvpnnpf_adcoooobo.jpeg | tvqvvpnnpf_adcoooobo.jpeg | tvqvvpnnpf | train | 21 |
5031 | /Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated/tvqvvpnnpf/tvqvvpnnpf_ooocodboa.jpeg | tvqvvpnnpf_ooocodboa.jpeg | tvqvvpnnpf | train | 21 |
5032 | /Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated/tvqvvpnnpf/tvqvvpnnpf_oocaoodob.jpeg | tvqvvpnnpf_oocaoodob.jpeg | tvqvvpnnpf | train | 21 |
5033 | /Landmark2/pdo/aiking/data/ultra-mnist/sample_black_cropped_resized_integrated/tvqvvpnnpf/tvqvvpnnpf_oaodoocbo.jpeg | tvqvvpnnpf_oaodoocbo.jpeg | tvqvvpnnpf | train | 21 |
5034 rows × 5 columns
ImageDataLoaders.from_df?
Signature:
ImageDataLoaders.from_df(
df,
path='.',
valid_pct=0.2,
seed=None,
fn_col=0,
folder=None,
suff='',
label_col=1,
label_delim=None,
y_block=None,
valid_col=None,
item_tfms=None,
batch_tfms=None,
bs=64,
val_bs=None,
shuffle=True,
device=None,
)
Docstring: Create from `df` using `fn_col` and `label_col`
File: /opt/anaconda/envs/aiking/lib/python3.9/site-packages/fastai/vision/data.py
Type: method
df_sample_intg['path']= df_sample_intg['path'].apply(lambda p : pathlib.Path(p).relative_to(path))
df_train = df_sample_intg[df_sample_intg['dstype'] =='train']
df_valid = df_sample_intg[df_sample_intg['dstype'] =='valid']
df_valid
path | fname | id | dstype | digit_sum | |
---|---|---|---|---|---|
36 | sample_black_cropped_resized_integrated/jfsumbgtsg/jfsumbgtsg_aoodooecb.jpeg | jfsumbgtsg_aoodooecb.jpeg | jfsumbgtsg | valid | 9 |
37 | sample_black_cropped_resized_integrated/jfsumbgtsg/jfsumbgtsg_oaooobecd.jpeg | jfsumbgtsg_oaooobecd.jpeg | jfsumbgtsg | valid | 9 |
38 | sample_black_cropped_resized_integrated/jfsumbgtsg/jfsumbgtsg_oobcaeood.jpeg | jfsumbgtsg_oobcaeood.jpeg | jfsumbgtsg | valid | 9 |
39 | sample_black_cropped_resized_integrated/jfsumbgtsg/jfsumbgtsg_doeocboao.jpeg | jfsumbgtsg_doeocboao.jpeg | jfsumbgtsg | valid | 9 |
40 | sample_black_cropped_resized_integrated/jfsumbgtsg/jfsumbgtsg_oaoobcode.jpeg | jfsumbgtsg_oaoobcode.jpeg | jfsumbgtsg | valid | 9 |
... | ... | ... | ... | ... | ... |
4957 | sample_black_cropped_resized_integrated/mdggejfmfw/mdggejfmfw_obafcooed.jpeg | mdggejfmfw_obafcooed.jpeg | mdggejfmfw | valid | 16 |
4958 | sample_black_cropped_resized_integrated/mdggejfmfw/mdggejfmfw_abdoeofco.jpeg | mdggejfmfw_abdoeofco.jpeg | mdggejfmfw | valid | 16 |
4959 | sample_black_cropped_resized_integrated/mdggejfmfw/mdggejfmfw_bcefaoodo.jpeg | mdggejfmfw_bcefaoodo.jpeg | mdggejfmfw | valid | 16 |
4960 | sample_black_cropped_resized_integrated/mdggejfmfw/mdggejfmfw_eafoobdco.jpeg | mdggejfmfw_eafoobdco.jpeg | mdggejfmfw | valid | 16 |
4961 | sample_black_cropped_resized_integrated/mdggejfmfw/mdggejfmfw_bocaoodef.jpeg | mdggejfmfw_bocaoodef.jpeg | mdggejfmfw | valid | 16 |
1007 rows × 5 columns
dls = ImageDataLoaders.from_df(df_train,path, folder=None, valid_pct=0.2, fn_col=0, label_col=4, bs=16); dls
<fastai.data.core.DataLoaders at 0x152ef20e5760>
dls.show_batch()
!nvidia-smi
Tue Mar 15 09:44:09 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.103.01 Driver Version: 470.103.01 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla K80 Off | 00000000:00:1E.0 Off | 0 |
| N/A 68C P0 62W / 149W | 1316MiB / 11441MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 173195 C ...da/envs/aiking/bin/python 1313MiB |
+-----------------------------------------------------------------------------+
learn = cnn_learner(dls, resnet34, metrics=[error_rate, accuracy]); learn
<fastai.learner.Learner at 0x152edfc161c0>
learn.fine_tune(120, freeze_epochs=50)
epoch | train_loss | valid_loss | error_rate | accuracy | time |
---|---|---|---|---|---|
0 | 4.799863 | 3.852269 | 0.934161 | 0.065839 | 00:17 |
1 | 4.440562 | 3.630288 | 0.913043 | 0.086957 | 00:18 |
2 | 4.137702 | 3.485804 | 0.910559 | 0.089441 | 00:18 |
3 | 3.930142 | 3.326438 | 0.881988 | 0.118012 | 00:18 |
4 | 3.772889 | 3.232335 | 0.875776 | 0.124224 | 00:18 |
5 | 3.537516 | 3.166939 | 0.872050 | 0.127950 | 00:18 |
6 | 3.261934 | 3.110428 | 0.859627 | 0.140373 | 00:18 |
7 | 3.226398 | 3.069852 | 0.857143 | 0.142857 | 00:17 |
8 | 3.125710 | 3.024059 | 0.842236 | 0.157764 | 00:17 |
9 | 2.930925 | 3.010297 | 0.827329 | 0.172671 | 00:17 |
10 | 2.793818 | 2.934250 | 0.831056 | 0.168944 | 00:17 |
11 | 2.674159 | 2.938103 | 0.821118 | 0.178882 | 00:17 |
12 | 2.607552 | 2.868927 | 0.804969 | 0.195031 | 00:17 |
13 | 2.445592 | 2.868701 | 0.811180 | 0.188820 | 00:17 |
14 | 2.324407 | 2.838203 | 0.796273 | 0.203727 | 00:17 |
15 | 2.280806 | 2.842952 | 0.806211 | 0.193789 | 00:17 |
16 | 2.259488 | 2.829938 | 0.780124 | 0.219876 | 00:17 |
17 | 2.162574 | 2.797639 | 0.763975 | 0.236025 | 00:17 |
18 | 2.081153 | 2.750004 | 0.751553 | 0.248447 | 00:17 |
19 | 1.971656 | 2.738195 | 0.757764 | 0.242236 | 00:17 |
20 | 1.952935 | 2.759722 | 0.786335 | 0.213665 | 00:17 |
21 | 1.873172 | 2.714657 | 0.762733 | 0.237267 | 00:17 |
22 | 1.861983 | 2.709193 | 0.734161 | 0.265839 | 00:17 |
23 | 1.857842 | 2.599679 | 0.727950 | 0.272050 | 00:17 |
24 | 1.770387 | 2.656592 | 0.734161 | 0.265839 | 00:17 |
25 | 1.717701 | 2.600894 | 0.732919 | 0.267081 | 00:17 |
26 | 1.651577 | 2.582834 | 0.696894 | 0.303106 | 00:17 |
27 | 1.646941 | 2.565307 | 0.719255 | 0.280745 | 00:17 |
28 | 1.605862 | 2.606378 | 0.709317 | 0.290683 | 00:17 |
29 | 1.578137 | 2.604069 | 0.690683 | 0.309317 | 00:17 |
30 | 1.487164 | 2.589584 | 0.688199 | 0.311801 | 00:17 |
31 | 1.499904 | 2.622078 | 0.685714 | 0.314286 | 00:17 |
32 | 1.416947 | 2.607370 | 0.695652 | 0.304348 | 00:17 |
33 | 1.483090 | 2.651856 | 0.689441 | 0.310559 | 00:17 |
34 | 1.375965 | 2.557366 | 0.667081 | 0.332919 | 00:17 |
35 | 1.371571 | 2.497138 | 0.633540 | 0.366460 | 00:17 |
36 | 1.211827 | 2.438924 | 0.645963 | 0.354037 | 00:17 |
37 | 1.239312 | 2.473795 | 0.618634 | 0.381366 | 00:17 |
38 | 1.246859 | 2.457524 | 0.619876 | 0.380124 | 00:17 |
39 | 1.235076 | 2.392699 | 0.612422 | 0.387578 | 00:17 |
40 | 1.121472 | 2.471771 | 0.634783 | 0.365217 | 00:17 |
41 | 1.137847 | 2.335734 | 0.627329 | 0.372671 | 00:17 |
42 | 1.139235 | 2.393010 | 0.619876 | 0.380124 | 00:17 |
43 | 1.119598 | 2.397207 | 0.611180 | 0.388820 | 00:17 |
44 | 1.060512 | 2.402379 | 0.614907 | 0.385093 | 00:17 |
45 | 1.056118 | 2.368381 | 0.598758 | 0.401242 | 00:17 |
46 | 1.030649 | 2.285016 | 0.583851 | 0.416149 | 00:17 |
47 | 0.960971 | 2.176330 | 0.563975 | 0.436025 | 00:17 |
48 | 1.022968 | 2.215484 | 0.582609 | 0.417391 | 00:17 |
49 | 0.937664 | 2.248081 | 0.550311 | 0.449689 | 00:17 |
epoch | train_loss | valid_loss | error_rate | accuracy | time |
---|---|---|---|---|---|
0 | 0.867752 | 2.070304 | 0.532919 | 0.467081 | 00:24 |
1 | 0.657931 | 1.962824 | 0.499379 | 0.500621 | 00:24 |
2 | 0.491939 | 1.833532 | 0.460870 | 0.539130 | 00:24 |
3 | 0.429447 | 1.721688 | 0.448447 | 0.551553 | 00:24 |
4 | 0.359826 | 1.722428 | 0.438509 | 0.561491 | 00:24 |
5 | 0.301921 | 1.702332 | 0.439752 | 0.560248 | 00:24 |
6 | 0.297945 | 1.634223 | 0.429814 | 0.570186 | 00:24 |
7 | 0.272402 | 1.613680 | 0.423602 | 0.576398 | 00:24 |
8 | 0.217226 | 1.498233 | 0.408696 | 0.591304 | 00:24 |
9 | 0.192630 | 1.502558 | 0.407453 | 0.592547 | 00:24 |
10 | 0.168445 | 1.563167 | 0.424845 | 0.575155 | 00:24 |
11 | 0.213405 | 1.507696 | 0.375155 | 0.624845 | 00:24 |
12 | 0.232360 | 1.438052 | 0.355280 | 0.644720 | 00:24 |
13 | 0.195828 | 1.398571 | 0.345342 | 0.654658 | 00:24 |
14 | 0.187390 | 1.284458 | 0.339130 | 0.660870 | 00:24 |
15 | 0.185759 | 1.265104 | 0.341615 | 0.658385 | 00:24 |
16 | 0.201981 | 1.307698 | 0.325466 | 0.674534 | 00:24 |
17 | 0.164799 | 1.397388 | 0.350311 | 0.649689 | 00:24 |
18 | 0.233455 | 1.324180 | 0.322981 | 0.677019 | 00:24 |
19 | 0.197242 | 1.124726 | 0.299379 | 0.700621 | 00:24 |
20 | 0.194921 | 1.244918 | 0.318012 | 0.681988 | 00:24 |
21 | 0.232981 | 1.216448 | 0.298137 | 0.701863 | 00:24 |
22 | 0.208103 | 1.070318 | 0.267081 | 0.732919 | 00:25 |
23 | 0.190553 | 1.139177 | 0.304348 | 0.695652 | 00:25 |
24 | 0.195688 | 1.171082 | 0.274534 | 0.725466 | 00:25 |
25 | 0.171583 | 1.080241 | 0.259627 | 0.740373 | 00:24 |
26 | 0.232525 | 0.954305 | 0.243478 | 0.756522 | 00:24 |
27 | 0.155711 | 0.969420 | 0.263354 | 0.736646 | 00:24 |
28 | 0.133733 | 0.837546 | 0.212422 | 0.787578 | 00:25 |
29 | 0.195431 | 0.987912 | 0.221118 | 0.778882 | 00:25 |
30 | 0.214681 | 0.939399 | 0.249689 | 0.750311 | 00:26 |
31 | 0.124636 | 0.754483 | 0.200000 | 0.800000 | 00:25 |
32 | 0.168588 | 0.819754 | 0.209938 | 0.790062 | 00:26 |
33 | 0.161661 | 0.791658 | 0.200000 | 0.800000 | 00:24 |
34 | 0.109011 | 0.782671 | 0.197516 | 0.802484 | 00:24 |
35 | 0.192774 | 0.789440 | 0.183851 | 0.816149 | 00:24 |
36 | 0.116204 | 0.625333 | 0.185093 | 0.814907 | 00:24 |
37 | 0.115642 | 0.688804 | 0.178882 | 0.821118 | 00:24 |
38 | 0.163575 | 0.828804 | 0.183851 | 0.816149 | 00:24 |
39 | 0.099515 | 0.641896 | 0.160248 | 0.839752 | 00:24 |
40 | 0.097081 | 0.602731 | 0.165217 | 0.834783 | 00:24 |
41 | 0.121348 | 0.636313 | 0.156522 | 0.843478 | 00:25 |
42 | 0.073731 | 0.656654 | 0.142857 | 0.857143 | 00:24 |
43 | 0.092405 | 0.526649 | 0.132919 | 0.867081 | 00:25 |
44 | 0.068598 | 0.442036 | 0.118012 | 0.881988 | 00:24 |
45 | 0.086852 | 0.523134 | 0.139130 | 0.860870 | 00:24 |
46 | 0.078918 | 0.480999 | 0.134161 | 0.865839 | 00:24 |
47 | 0.065713 | 0.465827 | 0.124224 | 0.875776 | 00:25 |
48 | 0.075608 | 0.439734 | 0.108075 | 0.891925 | 00:24 |
49 | 0.076840 | 0.388335 | 0.113043 | 0.886957 | 00:24 |
50 | 0.054057 | 0.341099 | 0.095652 | 0.904348 | 00:24 |
51 | 0.034011 | 0.340049 | 0.101863 | 0.898137 | 00:24 |
52 | 0.057932 | 0.397950 | 0.100621 | 0.899379 | 00:24 |
53 | 0.059346 | 0.382785 | 0.111801 | 0.888199 | 00:24 |
54 | 0.051964 | 0.452730 | 0.113043 | 0.886957 | 00:25 |
55 | 0.038493 | 0.320593 | 0.093168 | 0.906832 | 00:25 |
56 | 0.062239 | 0.304702 | 0.090683 | 0.909317 | 00:24 |
57 | 0.033538 | 0.266728 | 0.079503 | 0.920497 | 00:24 |
58 | 0.035955 | 0.304774 | 0.098137 | 0.901863 | 00:25 |
59 | 0.036616 | 0.333432 | 0.093168 | 0.906832 | 00:26 |
60 | 0.044442 | 0.376899 | 0.106832 | 0.893168 | 00:25 |
61 | 0.038577 | 0.285362 | 0.090683 | 0.909317 | 00:25 |
62 | 0.022169 | 0.328253 | 0.085714 | 0.914286 | 00:25 |
63 | 0.022791 | 0.391093 | 0.103106 | 0.896894 | 00:25 |
64 | 0.042478 | 0.299289 | 0.081988 | 0.918012 | 00:25 |
65 | 0.035514 | 0.238172 | 0.073292 | 0.926708 | 00:25 |
66 | 0.022597 | 0.263564 | 0.086957 | 0.913043 | 00:24 |
67 | 0.020295 | 0.218213 | 0.065839 | 0.934161 | 00:24 |
68 | 0.035894 | 0.282178 | 0.074534 | 0.925466 | 00:25 |
69 | 0.017982 | 0.260687 | 0.072050 | 0.927950 | 00:24 |
70 | 0.014254 | 0.238768 | 0.074534 | 0.925466 | 00:25 |
71 | 0.018478 | 0.199174 | 0.064596 | 0.935404 | 00:24 |
72 | 0.020054 | 0.219791 | 0.059627 | 0.940373 | 00:24 |
73 | 0.012720 | 0.224474 | 0.065839 | 0.934161 | 00:24 |
74 | 0.010848 | 0.215075 | 0.060870 | 0.939130 | 00:24 |
75 | 0.010696 | 0.227063 | 0.069565 | 0.930435 | 00:24 |
76 | 0.005756 | 0.189376 | 0.050932 | 0.949068 | 00:25 |
77 | 0.010287 | 0.185252 | 0.057143 | 0.942857 | 00:24 |
78 | 0.015689 | 0.136085 | 0.039752 | 0.960248 | 00:24 |
79 | 0.005426 | 0.115787 | 0.039752 | 0.960248 | 00:24 |
80 | 0.009698 | 0.151767 | 0.048447 | 0.951553 | 00:25 |
81 | 0.005204 | 0.110152 | 0.034783 | 0.965217 | 00:25 |
82 | 0.004047 | 0.114986 | 0.034783 | 0.965217 | 00:24 |
83 | 0.004158 | 0.163543 | 0.053416 | 0.946584 | 00:24 |
84 | 0.009039 | 0.138988 | 0.043478 | 0.956522 | 00:24 |
85 | 0.006754 | 0.191037 | 0.052174 | 0.947826 | 00:25 |
86 | 0.003982 | 0.195469 | 0.049689 | 0.950311 | 00:24 |
87 | 0.003866 | 0.177618 | 0.049689 | 0.950311 | 00:25 |
88 | 0.004492 | 0.174466 | 0.043478 | 0.956522 | 00:25 |
89 | 0.004034 | 0.152141 | 0.043478 | 0.956522 | 00:24 |
90 | 0.001440 | 0.186529 | 0.050932 | 0.949068 | 00:25 |
91 | 0.003572 | 0.189599 | 0.050932 | 0.949068 | 00:25 |
92 | 0.001508 | 0.168098 | 0.047205 | 0.952795 | 00:25 |
93 | 0.001858 | 0.148741 | 0.034783 | 0.965217 | 00:25 |
94 | 0.000744 | 0.138702 | 0.040994 | 0.959006 | 00:25 |
95 | 0.002585 | 0.141475 | 0.039752 | 0.960248 | 00:25 |
96 | 0.004510 | 0.135052 | 0.031056 | 0.968944 | 00:25 |
97 | 0.003152 | 0.136238 | 0.044720 | 0.955280 | 00:25 |
98 | 0.000858 | 0.136676 | 0.034783 | 0.965217 | 00:25 |
99 | 0.000519 | 0.143548 | 0.050932 | 0.949068 | 00:25 |
100 | 0.001485 | 0.119592 | 0.038509 | 0.961491 | 00:25 |
101 | 0.001062 | 0.121021 | 0.040994 | 0.959006 | 00:25 |
102 | 0.000551 | 0.099376 | 0.036025 | 0.963975 | 00:25 |
103 | 0.000613 | 0.107080 | 0.042236 | 0.957764 | 00:25 |
104 | 0.000308 | 0.108137 | 0.036025 | 0.963975 | 00:25 |
105 | 0.000468 | 0.101996 | 0.039752 | 0.960248 | 00:25 |
106 | 0.001191 | 0.096008 | 0.031056 | 0.968944 | 00:25 |
107 | 0.000355 | 0.108981 | 0.037267 | 0.962733 | 00:25 |
108 | 0.000911 | 0.101906 | 0.036025 | 0.963975 | 00:25 |
109 | 0.000985 | 0.106482 | 0.037267 | 0.962733 | 00:24 |
110 | 0.000230 | 0.105506 | 0.032298 | 0.967702 | 00:25 |
111 | 0.000306 | 0.099976 | 0.033540 | 0.966460 | 00:25 |
112 | 0.005453 | 0.099953 | 0.032298 | 0.967702 | 00:25 |
113 | 0.003114 | 0.102232 | 0.033540 | 0.966460 | 00:25 |
114 | 0.001258 | 0.102980 | 0.032298 | 0.967702 | 00:25 |
115 | 0.000452 | 0.102922 | 0.026087 | 0.973913 | 00:25 |
116 | 0.000287 | 0.099809 | 0.033540 | 0.966460 | 00:25 |
117 | 0.001599 | 0.097145 | 0.034783 | 0.965217 | 00:25 |
118 | 0.001247 | 0.103972 | 0.032298 | 0.967702 | 00:25 |
119 | 0.000188 | 0.105384 | 0.037267 | 0.962733 | 00:25 |
!pwd
# learn.save("ultramnist_a0.pkl")
learn.export()
/Landmark2/pdo/Code/ALDAOps/aiking/book/Competitions/ultramnist
learn?
Signature: learn(event_name)
Type: Learner
String form: <fastai.learner.Learner object at 0x152edfc161c0>
File: /opt/anaconda/envs/aiking/lib/python3.9/site-packages/fastai/learner.py
Docstring: Group together a `model`, some `dls` and a `loss_func` to handle training
Call docstring: Call `event_name` for all `Callback`s in `self.cbs`