{ "cells": [ { "cell_type": "markdown", "id": "0f88d3ed-cd5e-4a51-800c-9e6bda67c7ea", "metadata": {}, "source": [ "# Descriptive Analytics:Pasta" ] }, { "cell_type": "markdown", "id": "91264deb-b3ce-4b58-b8bd-c7db9c480f9c", "metadata": {}, "source": [ "## Imports" ] }, { "cell_type": "code", "execution_count": null, "id": "3cba0398-f55e-485c-9b65-4585b75f0ad7", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import scipy as sp\n", "import seaborn as sns \n", "import plotnine" ] }, { "cell_type": "code", "execution_count": null, "id": "94174749-41cc-4e1a-b654-660cd8a020d5", "metadata": {}, "outputs": [], "source": [ "sns.set()" ] }, { "cell_type": "markdown", "id": "972ca1c4-6733-4bd4-9872-07119e4b26c9", "metadata": {}, "source": [ "## Read Data" ] }, { "cell_type": "code", "execution_count": null, "id": "b45cb377-2df9-4181-8372-dd2791a21136", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>HHID</th>\n", " <th>TIME</th>\n", " <th>PASTA</th>\n", " <th>EXPOS</th>\n", " <th>AGE</th>\n", " <th>INCOME</th>\n", " <th>AREA</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0.939444</td>\n", " <td>1</td>\n", " <td>61.710758</td>\n", " <td>25186.798772</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>2.560969</td>\n", " <td>2</td>\n", " <td>61.710758</td>\n", " <td>25186.798772</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>0.901123</td>\n", " <td>0</td>\n", " <td>61.710758</td>\n", " <td>25186.798772</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>1.916530</td>\n", " <td>1</td>\n", " <td>61.710758</td>\n", " <td>25186.798772</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1</td>\n", " <td>5</td>\n", " <td>1.548751</td>\n", " <td>0</td>\n", " <td>61.710758</td>\n", " <td>25186.798772</td>\n", " <td>3</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " HHID TIME PASTA EXPOS AGE INCOME AREA\n", "0 1 1 0.939444 1 61.710758 25186.798772 3\n", "1 1 2 2.560969 2 61.710758 25186.798772 3\n", "2 1 3 0.901123 0 61.710758 25186.798772 3\n", "3 1 4 1.916530 1 61.710758 25186.798772 3\n", "4 1 5 1.548751 0 61.710758 25186.798772 3" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv(\"W101_PASTAPURCHASE_EDITED.csv\"); df.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "8cb6f1ca-a897-438a-8fb0-69ed8c161a0c", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<class 'pandas.core.frame.DataFrame'>\n", "RangeIndex: 40000 entries, 0 to 39999\n", "Data columns (total 7 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 HHID 40000 non-null int64 \n", " 1 TIME 40000 non-null int64 \n", " 2 PASTA 40000 non-null float64\n", " 3 EXPOS 40000 non-null int64 \n", " 4 AGE 40000 non-null float64\n", " 5 INCOME 40000 non-null float64\n", " 6 AREA 40000 non-null int64 \n", "dtypes: float64(3), int64(4)\n", "memory usage: 2.1 MB\n" ] } ], "source": [ "df.info()" ] }, { "cell_type": "code", "execution_count": null, "id": "9fa88fc5-22e1-4048-be58-bf135f95c84a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>HHID</th>\n", " <th>TIME</th>\n", " <th>PASTA</th>\n", " <th>EXPOS</th>\n", " <th>AGE</th>\n", " <th>INCOME</th>\n", " <th>AREA</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>count</th>\n", " <td>40000.000000</td>\n", " <td>40000.000000</td>\n", " <td>40000.000000</td>\n", " <td>40000.000000</td>\n", " <td>40000.000000</td>\n", " <td>40000.000000</td>\n", " <td>40000.000000</td>\n", " </tr>\n", " <tr>\n", " <th>mean</th>\n", " <td>1000.500000</td>\n", " <td>10.500000</td>\n", " <td>1.841545</td>\n", " <td>0.499100</td>\n", " <td>42.251409</td>\n", " <td>27096.126112</td>\n", " <td>2.996000</td>\n", " </tr>\n", " <tr>\n", " <th>std</th>\n", " <td>577.357414</td>\n", " <td>5.766353</td>\n", " <td>1.025911</td>\n", " <td>0.702041</td>\n", " <td>13.766646</td>\n", " <td>15928.188291</td>\n", " <td>1.409622</td>\n", " </tr>\n", " <tr>\n", " <th>min</th>\n", " <td>1.000000</td>\n", " <td>1.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>18.007529</td>\n", " <td>609.107170</td>\n", " <td>1.000000</td>\n", " </tr>\n", " <tr>\n", " <th>25%</th>\n", " <td>500.750000</td>\n", " <td>5.750000</td>\n", " <td>1.108936</td>\n", " <td>0.000000</td>\n", " <td>30.505706</td>\n", " <td>15379.591862</td>\n", " <td>2.000000</td>\n", " </tr>\n", " <tr>\n", " <th>50%</th>\n", " <td>1000.500000</td>\n", " <td>10.500000</td>\n", " <td>1.811417</td>\n", " <td>0.000000</td>\n", " <td>42.436092</td>\n", " <td>24487.068020</td>\n", " <td>3.000000</td>\n", " </tr>\n", " <tr>\n", " <th>75%</th>\n", " <td>1500.250000</td>\n", " <td>15.250000</td>\n", " <td>2.534365</td>\n", " <td>1.000000</td>\n", " <td>54.362395</td>\n", " <td>35272.533787</td>\n", " <td>4.000000</td>\n", " </tr>\n", " <tr>\n", " <th>max</th>\n", " <td>2000.000000</td>\n", " <td>20.000000</td>\n", " <td>6.592769</td>\n", " <td>5.000000</td>\n", " <td>64.984126</td>\n", " <td>141066.966883</td>\n", " <td>5.000000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " HHID TIME PASTA EXPOS AGE \\\n", "count 40000.000000 40000.000000 40000.000000 40000.000000 40000.000000 \n", "mean 1000.500000 10.500000 1.841545 0.499100 42.251409 \n", "std 577.357414 5.766353 1.025911 0.702041 13.766646 \n", "min 1.000000 1.000000 0.000000 0.000000 18.007529 \n", "25% 500.750000 5.750000 1.108936 0.000000 30.505706 \n", "50% 1000.500000 10.500000 1.811417 0.000000 42.436092 \n", "75% 1500.250000 15.250000 2.534365 1.000000 54.362395 \n", "max 2000.000000 20.000000 6.592769 5.000000 64.984126 \n", "\n", " INCOME AREA \n", "count 40000.000000 40000.000000 \n", "mean 27096.126112 2.996000 \n", "std 15928.188291 1.409622 \n", "min 609.107170 1.000000 \n", "25% 15379.591862 2.000000 \n", "50% 24487.068020 3.000000 \n", "75% 35272.533787 4.000000 \n", "max 141066.966883 5.000000 " ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.describe()" ] }, { "cell_type": "code", "execution_count": null, "id": "beaea334-5950-4f81-9e80-5db8b2a0a761", "metadata": {}, "outputs": [], "source": [ "df_agg = df.groupby(\"AREA\")['INCOME'].agg(['min', 'max', 'mean'])" ] }, { "cell_type": "code", "execution_count": null, "id": "ba1f3d27-69c2-4452-a191-f9ad325892b1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>min</th>\n", " <th>max</th>\n", " <th>mean</th>\n", " </tr>\n", " <tr>\n", " <th>AREA</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>3</th>\n", " <td>2353.176959</td>\n", " <td>111295.840727</td>\n", " <td>25879.485698</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>1331.260222</td>\n", " <td>141066.966883</td>\n", " <td>26030.910606</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>609.107170</td>\n", " <td>106319.106367</td>\n", " <td>26218.857948</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2740.776521</td>\n", " <td>85241.329860</td>\n", " <td>28076.599968</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1241.960729</td>\n", " <td>112983.969631</td>\n", " <td>29260.133137</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " min max mean\n", "AREA \n", "3 2353.176959 111295.840727 25879.485698\n", "5 1331.260222 141066.966883 26030.910606\n", "2 609.107170 106319.106367 26218.857948\n", "1 2740.776521 85241.329860 28076.599968\n", "4 1241.960729 112983.969631 29260.133137" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_agg.sort_values(by='mean')" ] }, { "cell_type": "code", "execution_count": null, "id": "3dad83ac-5bff-46a5-bdac-87eeaea55f1d", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>sum</th>\n", " </tr>\n", " <tr>\n", " <th>HHID</th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1493</th>\n", " <td>55.361931</td>\n", " </tr>\n", " <tr>\n", " <th>1511</th>\n", " <td>51.030304</td>\n", " </tr>\n", " <tr>\n", " <th>151</th>\n", " <td>50.816654</td>\n", " </tr>\n", " <tr>\n", " <th>647</th>\n", " <td>50.771865</td>\n", " </tr>\n", " <tr>\n", " <th>916</th>\n", " <td>50.502666</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>92</th>\n", " <td>23.926629</td>\n", " </tr>\n", " <tr>\n", " <th>267</th>\n", " <td>23.380097</td>\n", " </tr>\n", " <tr>\n", " <th>572</th>\n", " <td>23.225390</td>\n", " </tr>\n", " <tr>\n", " <th>1921</th>\n", " <td>21.738494</td>\n", " </tr>\n", " <tr>\n", " <th>1917</th>\n", " <td>19.256710</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>2000 rows × 1 columns</p>\n", "</div>" ], "text/plain": [ " sum\n", "HHID \n", "1493 55.361931\n", "1511 51.030304\n", "151 50.816654\n", "647 50.771865\n", "916 50.502666\n", "... ...\n", "92 23.926629\n", "267 23.380097\n", "572 23.225390\n", "1921 21.738494\n", "1917 19.256710\n", "\n", "[2000 rows x 1 columns]" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.groupby('HHID')['PASTA'].agg(['sum']).sort_values(by='sum', ascending=False)" ] }, { "cell_type": "code", "execution_count": null, "id": "f434e14e-7c37-456e-a642-01ca94343f72", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "TIME 218\n", "PASTA 218\n", "EXPOS 218\n", "AGE 218\n", "INCOME 218\n", "AREA 218\n", "dtype: int64" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[(df['AREA']==2) & (df['INCOME']> 20000)].groupby('HHID').agg('sum').query(\"PASTA>30\").count()" ] }, { "cell_type": "code", "execution_count": null, "id": "4757d0b4-50ff-441b-8887-f60aa6bc981d", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>PASTA</th>\n", " <th>EXPOS</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>PASTA</th>\n", " <td>1.000000</td>\n", " <td>0.326617</td>\n", " </tr>\n", " <tr>\n", " <th>EXPOS</th>\n", " <td>0.326617</td>\n", " <td>1.000000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " PASTA EXPOS\n", "PASTA 1.000000 0.326617\n", "EXPOS 0.326617 1.000000" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[['PASTA', 'EXPOS']].corr()" ] }, { "cell_type": "code", "execution_count": null, "id": "fbe42523-1bc0-4b8a-a8f6-e8f4b66a187a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<AxesSubplot:ylabel='Frequency'>" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAD7CAYAAAB5aaOHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYNUlEQVR4nO3de1BU9+H+8WcXZZWfIIGirmhj60RDa1trsJl0tJ1gFJN66x+ODNV0oiad2BjrrVJNgIHYlos2XrDaMZNMZxidZpqIEAdMwpiMzqTVNKZFo0bjJRbihZWKCqi75/eH436D4fJBd88ewvs14wx7Puz5PJw968Oe3XNwWZZlCQCATrgjHQAA0D1QGAAAIxQGAMAIhQEAMEJhAACMUBgAACMUBgDASK9IBwi3S5euKhAI3akmiYn9VF9/JWTrCxdyhl53yUrO0OppOd1ul+677/+1Ofa1L4xAwAppYdxeZ3dAztDrLlnJGVrkvIVDUgAAIxQGAMAIhQEAMEJhAACMUBgAACMUBgDACIUBADDytT8PA+hIbFxf9fGYPw2SkmJDMm9zy001Xm4KyboAu1AY6NH6eHpp6tIy2+ctXzNdjbbPCtwbDkkBAIxQGAAAIxQGAMCIbe9hpKWlKTo6Wh6PR5K0bNkyjR8/XgcPHlR2drZaWlqUnJysoqIiJSYmSlKHYwAAe9n6CmP9+vUqKytTWVmZxo8fr0AgoOXLlys7O1tVVVVKTU1VcXGxJHU4BgCwX0QPSdXU1Mjj8Sg1NVWSlJGRocrKyk7HAAD2s/VjtcuWLZNlWXrooYe0ZMkS1dXVafDgwcHxhIQEBQIBNTQ0dDgWHx9vZ2wAgGwsjNLSUnm9Xl2/fl2rV69WXl6eJk6cGPZ5ExP7hXydoTp5K9zI6Wzh/Lm7yzYlZ2iFO6dtheH1eiVJ0dHRyszM1LPPPqsnn3xStbW1we/x+Xxyu92Kj4+X1+ttd6wr6uuvhPSvUCUlxerCBeefckVO8/kjJVw/d6S3qSlyhlaocrrdrnZ/0bblPYxr166psfHWD2JZlnbt2qWUlBSNGjVKzc3NOnDggCRp+/btmjx5siR1OAYAsJ8trzDq6+u1cOFC+f1+BQIBDR8+XDk5OXK73SosLFROTk6rj85K6nAMAGA/Wwpj6NCh2rFjR5tjY8aMUXl5eZfHAAD24kxvAIARCgMAYITCAAAYoTAAAEYoDACAEQoDAGCEwgAAGKEwAABGKAwAgBFbL28O4JbrN/wRu1ptc8tNNV5uCtvc+PqiMIAIiO4dpalLyyIyd/ma6XL+tVfhRBySAgAYoTAAAEYoDACAEQoDAGCEwgAAGKEwAABGKAwAgBEKAwBghMIAABihMAAARigMAIARCgMAYITCAAAYoTAAAEYoDACAEQoDAGCEwgAAGKEwAABGKAwAgBEKAwBgxPbC2Lhxo0aOHKljx45Jkg4ePKhp06YpPT1dc+fOVX19ffB7OxoDANjL1sI4dOiQDh48qOTkZElSIBDQ8uXLlZ2draqqKqWmpqq4uLjTMQCA/WwrjOvXrysvL0+5ubnBZTU1NfJ4PEpNTZUkZWRkqLKystMxAID9bCuMdevWadq0aRoyZEhwWV1dnQYPHhy8nZCQoEAgoIaGhg7HAAD262XHJB999JFqamq0bNkyO6ZrJTGxX8jXmZQUG/J1hgM50R6nbHOn5OgMOW+xpTD279+vEydOaMKECZKkL774QvPmzdOcOXNUW1sb/D6fzye32634+Hh5vd52x7qivv6KAgErJD+HdOsBuXChMWTrCxdyms/fEzlh34j0Y2+qp+V0u13t/qJtyyGpZ555Rnv37lV1dbWqq6s1aNAgvfLKK5o/f76am5t14MABSdL27ds1efJkSdKoUaPaHQMA2M+WVxjtcbvdKiwsVE5OjlpaWpScnKyioqJOxwAA9otIYVRXVwe/HjNmjMrLy9v8vo7GAAD24kxvAIARCgMAYITCAAAYoTAAAEYoDACAEQoDAGCEwgAAGKEwAABGInqmNyBJsXF91cfDrgg4Hc9SRFwfTy9NXVoWkbnL10yPyLxAd8QhKQCAEQoDAGCEwgAAGKEwAABGKAwAgBEKAwBghMIAABgxLox33nlHN2/eDGcWAICDGRfG+vXrNW7cOOXl5enjjz8OZyYAgAMZF8bOnTv12muvyePxaOHChUpPT9emTZt09uzZcOYDADhEl97DePDBB7VixQq99957ysnJUWVlpSZOnKhf/OIX2rlzpwKBQLhyAgAirMvXkjpz5ox27typnTt3yuVy6fnnn5fX61Vpaal2796tjRs3hiMnACDCjAujtLRUZWVlOn36tB5//HEVFhZq9OjRwfH09HT9+Mc/DkdGAIADGBfG+++/r6eeekoTJkxQdHT0V8b79u2rDRs2hDQcAMA5jAtj/fr1crvd6t27d3DZjRs3ZFlWsEDGjRsX+oQAAEcwftN77ty5OnToUKtlhw4d0rx580IeCgDgPMaFcfToUf3gBz9otez73/++jhw5EvJQAADnMS6MuLg4Xbx4sdWyixcvqm/fviEPBQBwHuPCmDRpkpYuXapjx46pqalJR48e1YoVK/T444+HMx8AwCGMC2Px4sUaPny4Zs6cqTFjxmjWrFn61re+pSVLloQzHwDAIYw/JeXxeJSTk6Ps7GxdunRJ9913n1wuVzizAQAcpEtnejc2NurkyZO6evVqq+WPPPJIp/ddsGCBzp49K7fbrZiYGL344otKSUnRyZMnlZWVpYaGBsXHx6ugoEDDhg2TpA7HAAD2Mi6MN954Q3l5eYqJiVGfPn2Cy10ul959991O719QUKDY2FhJty6VvnLlSr355pvKyclRZmampk+frrKyMmVnZ+uvf/2rJHU4BgCwl3Fh/OlPf9K6dev005/+9K4mul0WknTlyhW5XC7V19fr8OHDevXVVyVJU6ZMUX5+vnw+nyzLancsISHhrjIAAO6ecWH4/f57PpN71apV2rdvnyzL0tatW1VXV6eBAwcqKipKkhQVFaUBAwaorq5OlmW1O9aVwkhM7HdPmduSlBTb+Tc5QHfJCfs5Zd9wSo7OkPMW48J4+umn9ec//1kLFiyQ2313f9l19erVkqQdO3aosLBQixYtuqv1dEV9/RUFAlbI1peUFKsLFxpDtr5w6U45YT8n7BvdaR/tSTndble7v2gbF8Zrr72mixcvauvWrYqPj281tmfPni4FmjFjhrKzszVo0CCdO3dOfr9fUVFR8vv9On/+vLxeryzLancMAGA/48IoKiq660muXr2qy5cvB/+zr66uVv/+/ZWYmKiUlBRVVFRo+vTpqqioUEpKSvCQU0djAAB7GRfGj370o7uepKmpSYsWLVJTU5Pcbrf69++vzZs3y+VyKTc3V1lZWdq0aZPi4uJUUFAQvF9HYwAAexkXxvXr11VSUqKKigo1NDToww8/1N69e3Xq1CnNnj27w/t+4xvf0N/+9rc2x4YPH67XX3+9y2MAAHsZv3v9+9//XseOHVNxcXHwDO8HHnhA27ZtC1s4AIBzGL/CeOedd7R7927FxMQEPyU1cOBAnTt3LmzhAADOYfwKo3fv3vL7/a2W+Xy+r3xiCgDw9WRcGJMnT9aKFSv0+eefS5LOnz+vvLw8/exnPwtbOACAcxgfklq8eLGKi4s1bdo0NTU1KT09XTNnztSvf/3rcOYDEGLXb/gjcsJkc8tNNV5usn1ehI5xYURHR2vlypVauXKlfD4flzcHuqno3lGaurTM9nnL10yX88+XRkeMC+P2oajbvnyJ86FDh4YuEQDAkYwLY+LEiXK5XLKs/7su0+1XGJ988knokwEAHMW4MI4cOdLq9oULF7Rx40alpqaGPBQAwHnu7rKzkpKSkrRq1SqtXbs2lHkAAA5114UhSZ999pmamvjUAwD0BMaHpDIzM1t9KqqpqUnHjx/nY7UA0EMYF8bMmTNb3e7bt68efPBBDRs2LNSZAAAOZFwYP//5z8OZAwDgcMaFsW7dOqPvs+PPrgIA7GdcGKdPn9bu3bs1atQoJScnq7a2Vv/5z380adIkeTyecGYEADiAcWFYlqU1a9YoPT09uGz37t2qrKzUH/7wh7CEAwA4h/HHat9//3099thjrZalpaXpvffeC3koAIDzGBfG/fffr9LS0lbLtm3bpm9+85shDwUAcB7jQ1IvvfSSnnvuOW3dujX4l/Z69eqlDRs2hDMfAMAhjAvjO9/5jqqqqvTxxx/r/PnzSkpK0ujRo9W7d+9w5gMAOMRdXxpk7NixunHjhq5duxbKPAAAhzJ+hXH06FE9++yzio6O1rlz5/TEE09o//79evPNN/Xyyy+HMSIAwAmMX2Hk5ubq+eefV2VlpXr1utUzY8eO1Ycffhi2cAAA5zAujOPHj2v69OmS/u8PJ8XExKilpSU8yQAAjmJcGMnJyaqpqWm17N///jcfqwWAHsL4PYxFixbpV7/6lTIyMnTjxg1t2bJF27dvV35+fjjzAQAcwvgVxqOPPqqtW7fK5/Np7Nix+u9//6sNGzZo3Lhx4cwHAHAIo1cYfr9f6enp2rVrl3Jzc8McCQDgREavMKKiohQVFcUb3ADQgxkfknryySf1m9/8Rv/85z915swZff7558F/nbl06ZKefvpppaena+rUqXruuefk8/kkSQcPHtS0adOUnp6uuXPnqr6+Pni/jsYAAPbqtDAuXLggScrPz9e+ffv0y1/+UpMmTdLEiRM1ceJETZo0qdNJXC6X5s+fr6qqKpWXl2vo0KEqLi5WIBDQ8uXLlZ2draqqKqWmpqq4uFiSOhwDANiv08K4/fcvjhw5oiNHjigtLS349ZEjR/TJJ590Okl8fLwefvjh4O3Ro0ertrZWNTU18ng8Sk1NlSRlZGSosrJSkjocAwDYr9PCsCyr1e39+/ff04SBQEDbtm1TWlqa6urqNHjw4OBYQkKCAoGAGhoaOhwDANiv009J3T6r+7Y7C6Sr8vPzFRMTo9mzZ+vtt9++p3WZSEzsF/J1JiXFhnyd4dBdcqLnuHOf7C77KDlv6bQw/H6/Pvjgg2BR3Hlbkh555BGjyQoKCnT69Glt3rxZbrdbXq9XtbW1wXGfzye32634+PgOx7qivv6KAoF7K7kvS0qK1YULjSFbX7h0p5zoOb68T3anfbQn5XS7Xe3+ot1pYSQmJmrlypXB2/Hx8a1uu1wuvfvuu52GWLt2rWpqavSXv/xF0dHRkqRRo0apublZBw4cUGpqqrZv367Jkyd3OgYAsF+nhVFdXX3Pk3z66afasmWLhg0bpoyMDEnSkCFDVFJSosLCQuXk5KilpUXJyckqKiqSJLnd7nbHAAD2M76W1L144IEHdPTo0TbHxowZo/Ly8i6PAQDsddd/cQ8A0LNQGAAAIxQGAMAIhQEAMEJhAACMUBgAACMUBgDACIUBADBCYQAAjFAYAAAjtlwaBN1DbFxf9fGwSwBoG/87IKiPp5emLi2zfd7yNdNtnxNA13FICgBghMIAABihMAAARigMAIARCgMAYITCAAAYoTAAAEYoDACAEQoDAGCEM70B2OL6Db+SkmJbLbvzdjg0t9xU4+WmsM/TE1AYAGwR3TsqYpeeabR91q8nDkkBAIxQGAAAIxQGAMAIhQEAMEJhAACMUBgAACMUBgDACIUBADBiS2EUFBQoLS1NI0eO1LFjx4LLT548qVmzZik9PV2zZs3SqVOnjMYAAPazpTAmTJig0tJSJScnt1qek5OjzMxMVVVVKTMzU9nZ2UZjAAD72VIYqamp8nq9rZbV19fr8OHDmjJliiRpypQpOnz4sHw+X4djAIDIiNi1pOrq6jRw4EBFRUVJkqKiojRgwADV1dXJsqx2xxISEiIVGQB6tK/9xQcTE/uFfJ12XGEzFLpLTiDc7vW50F2eS+HOGbHC8Hq9OnfunPx+v6KiouT3+3X+/Hl5vV5ZltXuWFfV119RIGCFLHdSUqwuXHD+tS/vJmd3eVIAXXUvz9mv83O+LW63q91ftCP2sdrExESlpKSooqJCklRRUaGUlBQlJCR0OAYAiAxbXmG89NJL2r17ty5evKinnnpK8fHxeuutt5Sbm6usrCxt2rRJcXFxKigoCN6nozEAgP1sKYwXXnhBL7zwwleWDx8+XK+//nqb9+loDABgP870BgAYoTAAAEYoDACAEQoDAGCEwgAAGKEwAABGKAwAgBEKAwBghMIAABihMAAARigMAIARCgMAYITCAAAYoTAAAEYoDACAEQoDAGCEwgAAGLHlL+7BXGxcX/XxhOZhSUqKDcl6AECiMBynj6eXpi4ti8jc5WumR2ReAN0Dh6QAAEYoDACAEQoDAGCE9zAAfK1dv+G/5w+A3O39m1tuqvFy0z3N7SQUBoCvtejeURH9IEljRGYODw5JAQCMUBgAACMUBgDACIUBADBCYQAAjFAYAAAjFAYAwIjjC+PkyZOaNWuW0tPTNWvWLJ06dSrSkQCgR3J8YeTk5CgzM1NVVVXKzMxUdnZ2pCMBQI/k6DO96+vrdfjwYb366quSpClTpig/P18+n08JCQlG63C7XSHPFY51ftmA+/qGdf1OnJufuWfM3dPmlcL//0Wo5+poHS7Lsqx7niFMampqtGLFCr311lvBZU888YSKior03e9+N4LJAKDncfwhKQCAMzi6MLxer86dOye/3y9J8vv9On/+vLxeb4STAUDP4+jCSExMVEpKiioqKiRJFRUVSklJMX7/AgAQOo5+D0OSTpw4oaysLF2+fFlxcXEqKCjQt7/97UjHAoAex/GFAQBwBkcfkgIAOAeFAQAwQmEAAIxQGAAAI46+NEgkXbp0Sb/97W915swZRUdH6/7771deXp4SEhJ08OBBZWdnq6WlRcnJySoqKlJiYqLjco4cOVIjRoyQ233r94LCwkKNHDkyIjklacGCBTp79qzcbrdiYmL04osvKiUlRSdPnlRWVpYaGhoUHx+vgoICDRs2LGI5O8qalpam6OhoeTweSdKyZcs0fvz4iGbduHGjNmzYoPLyco0YMcJR++ed7szqtH20vcfXadu0vZxh354W2nTp0iXrgw8+CN7+4x//aP3ud7+z/H6/9dhjj1n79++3LMuySkpKrKysrEjFbDenZVnWiBEjrCtXrkQq2ldcvnw5+PXbb79tzZgxw7Isy5ozZ461Y8cOy7Isa8eOHdacOXMiku/L2sv66KOPWkePHo1UrK+oqamx5s2bF8zltP3zy+7MalnO20fbenyduE3b2w/DvT05JNWO+Ph4Pfzww8Hbo0ePVm1trWpqauTxeJSamipJysjIUGVlZaRitpvTiWJjY4NfX7lyRS6XK3iBySlTpki6dYHJw4cPy+fzRSqmpLazOs3169eVl5en3Nzc4DKn7Z+3tZW1u3DqNo0EDkkZCAQC2rZtm9LS0lRXV6fBgwcHxxISEhQIBIKHUyLpyzlvmzNnjvx+v37yk59o4cKFio6OjmBCadWqVdq3b58sy9LWrVtVV1engQMHKioqSpIUFRWlAQMGqK6uLuJn9N+Z9bZly5bJsiw99NBDWrJkieLi4iKSb926dZo2bZqGDBkSXObU/bOtrLc5bR+98/F16jZtbz8M5/bkFYaB/Px8xcTEaPbs2ZGO0qE7c+7Zs0dvvPGGSktLdfz4cZWUlEQ4obR69Wrt2bNHixcvVmFhYaTjdKitrKWlpdq5c6f+/ve/y7Is5eXlRSTbRx99pJqaGmVmZkZk/q7oKKvT9lGnPL6daS9nuLcnhdGJgoICnT59Wi+//LLcbre8Xm+rQz4+n09utzviry7uzCkpeJHGfv36aebMmfrXv/4VyYitzJgxQ//4xz80aNAgx19g8nbWS5cuBXNFR0crMzMzYtt0//79OnHihCZMmKC0tDR98cUXmjdvnk6fPu24/bO9rHv37nXcPtrW4+vE53x7+2G4tyeF0YG1a9eqpqZGJSUlwZd1o0aNUnNzsw4cOCBJ2r59uyZPnhzJmG3m/N///qfm5mZJ0s2bN1VVVaWUlJSIZbx69arq6uqCt6urq9W/f39HXmCyvawej0eNjY2SJMuytGvXroht02eeeUZ79+5VdXW1qqurNWjQIL3yyiuaP3++4/bP9rJ+73vfc9Q+eu3atTYfX6c959vLacdznvcw2vHpp59qy5YtGjZsmDIyMiRJQ4YMUUlJiQoLC5WTk9PqI3ZOyzl//nxlZ2fL5XLp5s2b+uEPf6hFixZFLGdTU5MWLVqkpqYmud1u9e/fX5s3b5bL5VJubq6ysrK0adOm4AUmI6m9rPX19Vq4cKH8fr8CgYCGDx+unJyciGa9k9vtdtT+2ZHPPvvMUftoe4+v07Zpeznt2J5cfBAAYIRDUgAAIxQGAMAIhQEAMEJhAACMUBgAACMUBgDACIUBADBCYQAAjPx/aQc/0Pm6F7kAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.groupby('HHID')['PASTA'].sum().plot(kind='hist')" ] }, { "cell_type": "code", "execution_count": null, "id": "2462a350-72fd-4e7a-aa2a-fb7db4ff3397", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "*c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2D array with a single row if you intend to specify the same RGB or RGBA value for all points.\n" ] }, { "data": { "text/plain": [ "<AxesSubplot:xlabel='TIME', ylabel='PASTA'>" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEOCAYAAABM5Pr8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhxklEQVR4nO3df3BU1f3/8efejRuMZDfJSsKi34oyWoJ2RMmM1gpUSitDw5BqbR2mzDD2hzb+CDoIkQgoEjABrWKlVNFm/NHaOjRLiUELjVOZtCAUcQoRPpamCrIE2ABJSMKa3fv9g2GHEJIN3uzdTfJ6/MXeczd5Z+8hr5xz7z3XYZqmiYiIiAVGogsQEZH+T2EiIiKWKUxERMQyhYmIiFimMBEREcsUJiIiYlmKXd+osLCQAwcOYBgGaWlpLFiwgNzcXN5//32ef/55TNPENE0eeOABvve97wFQX19PcXExx48fJyMjg7KyMkaOHBmzTUREbGbapKmpKfrvjRs3mgUFBWYkEjHz8vLMvXv3mqZpmp988ok5duxYMxwOm6ZpmjNnzjT9fr9pmqbp9/vNmTNnRr9GT20iImIv26a50tPTo/9uaWnB4XAAYBgGzc3NADQ3N5OdnY1hGASDQerq6sjPzwcgPz+furo6Ghsbe2wTERH72TbNBVBSUkJtbS2mabJmzRocDgfPPfcchYWFpKWlcfLkSV566SUAAoEAOTk5OJ1OAJxOJ9nZ2QQCAUzT7LYtKyvLzh9JRESwOUxKS0sB8Pv9lJeX85vf/Ibf/va3rFq1inHjxvGvf/2L2bNn884779hSTzDYQiSSfKvJDBuWzpEjzYkuo1uqzxrVZ43qs8ZKfYbhwOsdev42K0V9VQUFBWzdupXdu3dz+PBhxo0bB8C4ceO4+OKL2bdvHz6fj4aGBsLhMADhcJjDhw/j8/l6bBMREfvZEiYnT54kEAhEX9fU1ODxePD5fBw6dIj//ve/AOzbt49gMMjXvvY1vF4vubm5VFVVAVBVVUVubi5ZWVk9tomIiP1smeZqa2ujqKiItrY2DMPA4/GwevVqsrOzeeKJJygqKoqekF+6dCkZGRkAPPHEExQXF7Nq1SrcbjdlZWXRr9lTm4iI2MthmoN3CXqdM/lqVJ81qs8a1WfNgDpnIiLSHzW1hqgPNNHUGkp0KUnH1qu5RET6qy27D1GxYQ9Ow0E4YjJr6mhuHjM80WUlDY1MRERiaGoNUbFhD6GOCG2hMKGOCBXVezRCOYvCREQkhuCJdpyGo9M2p+EgeKI9QRUlH4WJiEgMXs8QwudcrBOOmHg9QxJUUfJRmIiIxOBOczFr6mhcKQYXu5y4UgxmTR2NO82V6NKShk7Ai4j0ws1jhjNmZBbBE+14PUMUJOdQmIiI9JI7zaUQ6YamuURExDKFiYiIWKYwERERyxQmIiJimcJEREQsU5iIiIhlChMREbFMYSIiIpYpTERExDKFiYiIWKYwERERyxQmIiJimcJEREQsU5iIiIhlChMREbFMYSIiIpYpTERExDKFiYiIWKYwERERyxQmIiJiWUqiC5D+pak1xLHPj+E0I7jTXIkuR0SShMJEem3L7kNUbNhDSopBR0eEWVNHc/OY4YkuS0SSgKa5pFeaWkNUbNhDqCNCa3sHoY4IFdV7aGoNJbo0EUkCChPpleCJdpyGo9M2p+EgeKI9QRWJSDJRmEiveD1DCEfMTtvCEROvZ0iCKhKRZKIwkV5xp7mYNXU0rhSDtCEpuFIMZk0drZPwIgLoBLxcgJvHDGfMyCzCDkNXc4lIJwoTuSDuNBfDhqVz5EhzoksRkSSiaS4REbFMYSIiIpbZNs1VWFjIgQMHMAyDtLQ0FixYQHp6Ovfff390n+bmZlpaWvjwww8BmDRpEi6Xi9TUVADmzJnD+PHjAdi5cycLFy7k1KlTXHbZZSxfvhyv12vXjyMiImexLUzKyspIT08HYNOmTcyfP5/KykrWrVsX3ae0tJRwONzpfStXruSaa67ptC0SifDoo4+ybNky8vLyWLVqFStWrGDZsmXx/0FERKQL26a5zgQJQEtLCw5H5xvgQqEQ69ev584774z5tXbt2kVqaip5eXkA3H333bz77rt9W7CIiPSarVdzlZSUUFtbi2marFmzplNbTU0NOTk5XHvttZ22z5kzB9M0GTduHI888ghut5tAIMCIESOi+2RlZRGJRDh+/DgZGRm9rsfrHWrp54mnYcPSY++UQKrPGtVnjeqzJh712RompaWlAPj9fsrLy3n55ZejbWvXru0yKnnzzTfx+XyEQiFKS0tZvHgxK1as6LN6gsEWIufc1Z0Mkv3SW9VnjeqzRvVZY6U+w3B0+0d4Qq7mKigoYOvWrRw7dgyAhoYGtm3bxrRp0zrt5/P5AHC5XMyYMYMdO3ZEtx88eDC6X2NjI4ZhXNCoRERE+o4tYXLy5EkCgUD0dU1NDR6PJ/rLv7KykokTJ5KZmRndp7W1lebm0+lpmibV1dXk5uYCcN1119He3s727dsBeOutt5gyZYodP4qIiJyHLdNcbW1tFBUV0dbWhmEYeDweVq9eHT0JX1lZSUlJSaf3BINBHnzwQcLhMJFIhFGjRrFo0SIADMOgvLycRYsWdbo0WEREEsNhmmbynTSwic6ZfDWqzxrVZ43qs2ZAnTMREZGBRWEiIiKWKUxERMQyhYmIiFimMBEREcsUJiIiYpnCRERELFOYiIiIZQoTERGxTGEiIiKWKUxERMQyW59nIjLYNbWGOPb5MZxmBHeaK9HliPQZhYmITbbsPkTFhj2kpBh0dESYNXU0N48ZnuiyRPqEprlEbNDUGqJiwx5CHRFa2zsIdUSoqN5DU2so0aWJ9AmFiYgNgifacRqOTtuchoPgifYEVSTStxQmIjbweoYQPufZOeGIidczJEEVifQthYmIDdxpLmZNHY0rxSBtSAquFINZU0frJLwMGDoBL2KTm8cMZ8zILMIOQ1dzyYCjMBGxkTvNlfSPdRX5KjTNJSIililMRETEMoWJiPRaU2uI+kCT7o+RLnTORER65cwd/E7DQThi6g5+6UQjExGJ6ew7+NtCYd3BL10oTEQkpmS5g7+pNcT/fX5MIZaENM0lIjElwx38WigzuWlkIiIxnX0H/8Uup+138GuhzOSnkYmI9MqZO/iDJ9rxeobYegd/T9NsWkkgOShMRKTX3GmuhPzyToZpNumZprlEJOlpoczTkvk+H41MRKRfGOwLZSb7fT4amYhIv+FOc3HN1zIHXZD0h/t8FCYXKJmHmSIyMCXLfT490TTXBUj2YaaIDEz94QIEjUx6qT8MM0VkYEr0fT69oZFJL+k69+TQ1BpKyH0OIomWyPt8ekNh0kv9YZg50GmaUQa7RN3n0xu2hUlhYSEHDhzAMAzS0tJYsGAB6enp3H///dF9mpubaWlp4cMPPwSgvr6e4uJijh8/TkZGBmVlZYwcOTJmWzycGWZWVHf+ZZasB3agOXua8YyK6j2MGZmlYyCSBGwLk7KyMtLT0wHYtGkT8+fPp7KyknXr1kX3KS0tJRwOR18vWrSIGTNmMH36dNatW8fChQt57bXXYrbFSzIMMwfrNI+mGUWSm20n4M8ECUBLSwsOR+dfDKFQiPXr13PnnXcCEAwGqaurIz8/H4D8/Hzq6upobGzssS3e3GkurvS5E/ILbMvuQ8xd9Q9W/OEj5q76B1vqDtleQ6JomlEkuVkamXz66adUVlYyd+7cXu1fUlJCbW0tpmmyZs2aTm01NTXk5ORw7bXXAhAIBMjJycHpdALgdDrJzs4mEAhgmma3bVlZWb2u3+sd2ut97TZsWHqn1ydaTlHx7t7O0zwb9jJh3NfwDE21u7wu9cX9+wEP/fgGVv5pJylOBx1hk4d+NJZRV3iTor4LpfqsUX3WxKO+Cw6TxsZGqqqq8Pv97Nmzh/Hjx/f6vaWlpQD4/X7Ky8t5+eWXo21r166NjkrsEgy2EDnnr91kMGxYOkeONHfaVh9owtl5MIfTAXv/e5QrfW4bqzt/fXYY8/88lP/ym52m+c5XR6Lq6y3VZ43qs8ZKfYbh6PaP8F6FyZdffsn7779PZWUlmzdvxufzcfjwYd5+++3oSOJCFBQUsHDhQo4dO0ZmZiYNDQ1s27aN8vLy6D4+n4+GhgbC4TBOp5NwOMzhw4fx+XyYptlt20ClaZ7TkvlqFjsM1nNmA8VAPn4xw+TJJ5+kurqaiy66iClTpvDGG28wduxYbr31VoYP791lmSdPnqSpqSn6y76mpgaPx0NGRgYAlZWVTJw4kczMzOh7vF4vubm5VFVVMX36dKqqqsjNzY1OY/XUNhDpajLRpdH920A/fjHD5K233sLj8fDAAw/w/e9/v9OJ9N5qa2ujqKiItrY2DMPA4/GwevXq6En4yspKSkpKurzviSeeoLi4mFWrVuF2uykrK+tV20CVDFeTSWLo0uj+bTAcv5hhsnHjRvx+P6+88gpLly5l4sSJ5OfnE4lEYr016tJLL+VPf/pTt+3vvffeebePGjWKt99++4LbBrLBPs0zWOnS6P5tMBy/mJcGX3755TzwwANs3LiRV199FY/HQ0lJCY2NjfzqV7/iP//5jx11igxqOmfWvw2G4xczTF566aXov/Py8liyZAm1tbWsWLGCQCBAQUFBPOsTEfrHQn/SvcFw/BymafZ4beyNN97Ijh07um1vaGggJyenzwuzQ3+6NDiZqD5rrNRnx9VAA/nzs0NP9SXD1VwJuzQ4Rtb02yAR6Y90zqx/G8jHL2aYhMNh1q5d22Oo/PCHP+zTokREpH+JGSYdHR34/f5u2x0Oh8JERGSQixkmQ4YM4fXXX7ejFhER6af0cCwRkUGiqTXEsc+P4TQjfX7uJmaYjBgxok+/oYiI2O/Mci4pKQYdHZE+X84l5n0mVVVVXbbV1tZSUVHR4yXDIiKSHM5ezqW1vYNQR4SK6j00tYb67HvEDJNHHnmk07IlL7/8Mvfeey/r16/nnnvu6fHkvIiIJF5Py7n0lZhhsmPHDiZNmgRAJBLhlVde4ZlnnmHt2rU8//zzvPrqq31WjIiI9D07lnOJGSZNTU14vaefZldXV8epU6eYPHkyABMmTODgwYN9VoxIvDW1hqgPNPXp8F4k2Z29nEvakJS4LOcS8wR8ZmYmBw4c4PLLL2fr1q3ccMMN0cfltra2Rv8tkuwG+vMkRHpy5hEWYYeRmKu57rrrLu69915uvfVW/H4/CxYsiLZt376dq666qk8LEomHwfA8CZFY3GmuuK1tFjNM7rvvPnJycti1axclJSXk5+dH2xobG7nnnnv6vCiRvjYYnichkki9umnxBz/4AT/4wQ+6bJ8+fTqbN2/u86JE+tpgeJ6ESCJ9pTvg9+zZg9/vp6qqio6ODrZs2dLXdYn0qTMnICuqO58z0ahEpG/0OkyCwSDr16/H7/ezd+9eHA4HJSUlWuRR+o0zJyAT/TwJkYEo5qXBGzZs4L777mPChAmsXbuWqVOnsmnTJrKyspgyZQqpqal21CnSJ9xpLq70uRUkIn0s5sjk4YcfJiMjg+eee47vfve7dtQkIiL9TMyRydKlS7n66qt56KGH+NGPfsTrr79OMBi0ozYZgHTToMjAFHNkcscdd3DHHXdw8OBB/H4/b7zxBk8//TQAf//735k+fbpuXJRe0U2DIgNXzJFJW1sbzz77LIsXL6ajo4O//OUvvPbaa9xxxx0sW7aMb3/72zaUKf3d2TcNtoXCcVm1VCQWjYzjJ+bIZPHixezatYvx48fz17/+lRMnTrBgwQLGjRvHggUL2LRpkx11Sj+nmwYl0TQyjq+YI5PNmzfzyiuvMHfuXF5++WXef//9aJvL5WLq1KlxLVAGBt00KImkkXH8xQyT1tZWsrOzAfD5fLS0tMS9KBl4zl619GKXMy6rlop0x47neQx2Mae5wuEwW7ZswTRP/1V55o73M68BvvnNb8avQhkwdNOgJIpGxvEXM0y8Xi/z58+Pvs7IyOj02uFw8Le//S0+1cmA405zKUTEdlpOJ/5ihklNTY0ddYiIxJVGxvH1lRZ6FBHpjzQyjp+YJ+BFRERiUZiIiIhlChMREbFMYSIiIpYpTERExDKFiYiIWGbbpcGFhYUcOHAAwzBIS0tjwYIF5ObmcurUKZYuXco///lPUlNTGTt2LE899RQAkyZNwuVyRZ/mOGfOHMaPHw/Azp07WbhwIadOneKyyy5j+fLleL1eu34cERE5i21hUlZWRnp6OgCbNm1i/vz5VFZWsnz5clJTU3nvvfdwOBwcPXq00/tWrlzJNddc02lbJBLh0UcfZdmyZeTl5bFq1SpWrFjBsmXL7PpxRETkLLZNc50JEoCWlhYcDgcnT57E7/dTVFSEw3F6EbZLL7005tfatWsXqamp5OXlAXD33Xfz7rvvxqdwkbPoeRgi52frHfAlJSXU1tZimiZr1qxh//79ZGRk8Otf/5qtW7dyySWXUFRUFA0JOD21ZZom48aN45FHHsHtdhMIBBgxYkR0n6ysLCKRCMePHycjI6PX9Xi9Q/vyx+tTw4alx94pgQZjfX/fcYCVf9pJitNBR9jkoR+NZeKNl3+lrzUYP7++pPqsiUd9toZJaWkpAH6/n/LycmbPns3+/fsZM2YM8+bN4+OPP+a+++5j48aNDB06lDfffBOfz0coFKK0tJTFixezYsWKPqsnGGwhcs5Koslg2LB0jhxpTnQZ3RqM9TW1hlj5x48IdUQIfXl628o/fsTl3osveHmOwfj59SXVZ42V+gzD0e0f4Qm5mqugoICtW7eSk5NDSkoK+fn5AFx//fVkZmZSX18PnH5+Cpx+CNeMGTPYsWNHdPvBgwejX6+xsRHDMC5oVCJyIfQ8DJGe2RImJ0+eJBAIRF/X1NTg8Xjwer3cdNNN1NbWAlBfX08wGOSKK66gtbWV5ubT6WmaJtXV1eTm5gJw3XXX0d7ezvbt2wF46623mDJlih0/igxSeh6GSM9smeZqa2ujqKiItrY2DMPA4/GwevVqHA4HTz75JPPnz6esrIyUlBTKy8txu93s37+fBx98kHA4TCQSYdSoUSxatAgAwzAoLy9n0aJFnS4NFokXPQ9DpGcO8+xHJg4yOmfy1Qzm+ppaQ5afhzGYP7++oPqsidc5Ez3PROQC6HkYIuen5VRERMQyhYmIiFimMBEREcsUJiIiYpnCRERELFOYiIiIZQoTERGxTGEiIiKWKUxERMQyhYmIiFimMBEREcsUJiIiYpnCRERELFOYiIiIZQoTERGxTGEiIiKWKUxERMQyhYmIiFimMBEREcsUJiIiYpnCRERELFOYiIiIZQoTERGxTGEiIiKWKUxERMQyhckg09Qaoj7QRFNrKNGlSALo+Eu8pCS6ALHPlt2HqNiwB6fhIBwxmTV1NDePGZ7ossQmOv4STxqZDBJNrSEqNuwh1BGhLRQm1BGhonqP/kIdJHT8Jd4UJoNE8EQ7TsPRaZvTcBA80Z6gisROOv4SbwqTQcLrGUI4YnbaFo6YeD1DElSR2EnHX+JNYTJIuNNczJo6GleKwcUuJ64Ug1lTR+NOcyW6NLGBjr/Em07ADyI3jxnOmJFZBE+04/UM0S+SQUbHX+JJYTLIuNNc+iUyiOn4S7xomktERCxTmIiIiGUKExERscy2cyaFhYUcOHAAwzBIS0tjwYIF5ObmcurUKZYuXco///lPUlNTGTt2LE899RQA9fX1FBcXc/z4cTIyMigrK2PkyJEx20RExF62hUlZWRnp6ekAbNq0ifnz51NZWcny5ctJTU3lvffew+FwcPTo0eh7Fi1axIwZM5g+fTrr1q1j4cKFvPbaazHbRETEXrZNc50JEoCWlhYcDgcnT57E7/dTVFSEw3H67txLL70UgGAwSF1dHfn5+QDk5+dTV1dHY2Njj23JTgvtichAZOulwSUlJdTW1mKaJmvWrGH//v1kZGTw61//mq1bt3LJJZdQVFREXl4egUCAnJwcnE4nAE6nk+zsbAKBAKZpdtuWlZVl5490QbTQnogMVLaGSWlpKQB+v5/y8nJmz57N/v37GTNmDPPmzePjjz/mvvvuY+PGjbbU4/UOteX7AJxoOUXFu3sJdUSi2yo27GXCuK/hGZraZf9hw9K7bEsmqs8a1WeN6rMmHvUl5KbFgoICFi5cSE5ODikpKdHpquuvv57MzEzq6+sZMWIEDQ0NhMNhnE4n4XCYw4cP4/P5ME2z27YLEQy2EDlnvaJ4qQ804ey8zh5OB+z971Gu9Lk7bR82LJ0jR5ptqeurUH3WqD5rVJ81VuozDEe3f4Tbcs7k5MmTBAKB6Ouamho8Hg9er5ebbrqJ2tpa4PQVWsFgkCuuuAKv10tubi5VVVUAVFVVkZubS1ZWVo9tyUoL7YnIQOYwTTPuf5ofPXqUwsJC2traMAwDj8fDvHnzuPbaa9m/fz/z58/n+PHjpKSkMHv2bCZOnAjAvn37KC4upqmpCbfbTVlZGVdddVXMtt6yc2QCsKXuEBXVsc+ZDOS/bOyg+qxRfdYM5Pp6GpnYEibJyu4wgdNXc8VaaG8gd0Y7qD5rVJ81A7m+nsJECz3aTAvtichApOVURETEMoWJiIhYpjARERHLFCYiImKZwkRERCxTmIiIiGUKExERsUxhIiIililMRETEMoWJiIhYpjARERHLFCYiYhs9tnrg0kKPImILPbZ6YNPIRETirqk1RMWGPYQ6IrSFwoQ6IlRU79EIZQBRmIhI3AVPtOM0Oj+32mk4CJ5oT1BF0tcUJiISd3ps9cCnMBGRuHOnuZg1dTSuFIOLXU5cKQazpo7Wg+IGEJ2AFxFb3DxmOGNGZsV8bLX0TwoTEbGNHls9cGmaS0RELFOYiIiIZQoTERGxTGEiIiKWDeoT8MY5N1Elk2SuDVSfVarPGtVnzVetr6f3OUzTNLttFRER6QVNc4mIiGUKExERsUxhIiIililMRETEMoWJiIhYpjARERHLFCYiImKZwkRERCxTmIiIiGUKExERsWxQr82VKMeOHWPu3Ll8/vnnuFwurrjiChYvXkxWVlan/YqLi/nHP/5BZmYmAFOmTOGXv/ylLTVOmjQJl8tFamoqAHPmzGH8+PGd9mlra+Oxxx5j9+7dOJ1O5s2bx2233Rb32g4cOMD9998ffd3c3ExLSwsffvhhp/1eeOEFfv/735OdnQ3AjTfeyKJFi+JSU1lZGe+99x5ffPEF69ev55prrgGgvr6e4uJijh8/TkZGBmVlZYwcObLL+8PhMEuWLGHz5s04HA5+8YtfcNddd8W1vt72Q4h/X+zu8+tNP4T498Xz1dfbfgjx74s9HcudO3eycOFCTp06xWWXXcby5cvxer1dvoblz9AU2x07dszcsmVL9PXTTz9tPvbYY132mzdvnvn666/bWVrUbbfdZu7du7fHfV544QWzpKTENE3TrK+vN2+55RazpaXFjvI6WbJkifnkk0922b5y5Urz6aeftqWGbdu2mQcPHuzyuc2cOdP0+/2maZqm3+83Z86ced73V1ZWmvfcc48ZDofNYDBojh8/3ty/f39c6+ttPzTN+PfF7j6/3vRD04x/X+yuvrN11w9NM/59sbtjGQ6HzcmTJ5vbtm0zTdM0X3zxRbO4uPi8X8PqZ6hprgTIyMjgpptuir4eO3YsBw8eTGBFX82GDRv48Y9/DMDIkSO57rrr+OCDD2ytIRQKsX79eu68805bv++58vLy8Pl8nbYFg0Hq6urIz88HID8/n7q6OhobG7u8v7q6mrvuugvDMMjKymLy5Mm8++67ca0vmfrh+eq7EPHui7HqS3Q/7O5Y7tq1i9TUVPLy8gC4++67u+1XVj9DhUmCRSIR/vCHPzBp0qTztv/ud79j2rRpFBYWsm/fPltrmzNnDtOmTeOJJ56gqampS/vBgwe57LLLoq99Ph+HDh2ys0RqamrIycnh2muvPW/7O++8w7Rp07jnnnv46KOPbK0tEAiQk5OD0+kEwOl0kp2dTSAQOO++I0aMiL62+7OM1Q8hcX0xVj+ExPfFWP0Q7OuLZx/Lc/tVVlYWkUiE48ePd3mf1c9QYZJgTz31FGlpafzkJz/p0vbwww+zceNG1q9fz/e+9z1+9rOfEQ6HbanrzTff5C9/+Qtr167FNE0WL15sy/e9UGvXru32r8G7776bv/3tb6xfv56f/vSnFBYWcuzYMZsr7B966oeQuL44EPoh2NsXYx3LeFGYJFBZWRmfffYZzz33HIbR9VDk5OREtxcUFNDa2mrbX1tnhvQul4sZM2awY8eOLvuMGDGCL774Ivo6EAgwfPhwW+oDaGhoYNu2bUybNu287cOGDeOiiy4C4Fvf+hY+n49PP/3Utvp8Ph8NDQ3RX7rhcJjDhw+fd7rE5/N1mmKy87OM1Q8hcX2xN/0QEtsXY/VDsK8vnnssz+1XjY2NGIZBRkZGl/da/QwVJgny7LPPsmvXLl588UVcLtd592loaIj+e/PmzRiGQU5OTtxra21tpbm5GQDTNKmuriY3N7fLflOmTOGPf/wjAP/73//497//fd4rbeKlsrKSiRMnRq8wOtfZn98nn3zCF198wZVXXmlXeXi9XnJzc6mqqgKgqqqK3Nzc814tNWXKFN5++20ikQiNjY1s2rSJ22+/Pe419qYfQmL6Ym/7ISS2L8bqh2BPXzzfsbzuuutob29n+/btALz11ltMmTLlvO+3+hnqSYsJ8Omnn5Kfn8/IkSMZMmQIAJdffjkvvvgi06dP56WXXiInJ4dZs2YRDAZxOBwMHTqUuXPnMnbs2LjXt3//fh588EHC4TCRSIRRo0bx+OOPk52d3am+1tZWiouL+eSTTzAMg0cffZTJkyfHvb4zbr/9dkpKSpgwYUJ0289//nMeeughvvGNbzBv3jx2796NYRhcdNFFPPTQQ0ycODEutSxZsoS//vWvHD16lMzMTDIyMnjnnXfYt28fxcXFNDU14Xa7KSsr46qrrupSazgcZvHixdTW1kbbzpwMjVd9zz33XLf9ELC1L56vvtWrV3fbD8+tL959sbvjC+fvh2BvX+zpd8qOHTtYtGhRp0uDL730UqBvP0OFiYiIWKZpLhERsUxhIiIililMRETEMoWJiIhYpjARERHLFCYiImKZlqAXiZMbbrgh+u+2tjZcLld0na4nn3ySzz77jM8++4wVK1YA8PWvf52srCw2b95MSsrp/5pffvklEyZMoLGxkb179wIwc+ZMdu7cGd0H4KabbmL16tV2/WgiXShMROLk7MX8Jk2axJIlS7jlllui21544YUu73G73XzwwQfRBRc/+OAD3G53l5WGFy5c2KfPOxGxStNcIklk+vTp+P3+6Ot169ZRUFCQsHpEekthIpJEJk+ezPbt22lqauLEiRNs376d73znO4kuSyQmTXOJJJHU1FRuu+02qqurMU2TSZMmRR9Ze7YlS5ZQVlYWff2Tn/yE2bNn21ipSGcKE5EkU1BQwDPPPAOcfjDU+Tz++OM6ZyJJRdNcIkkmLy+PI0eOcPToUcaNG5fockR6RSMTkSTjcDiil/k6HI4EVyPSOwoTkSR09dVX99i+ePFili5dGn195ZVX8uc//zneZYl0S88zERERy3TORERELFOYiIiIZQoTERGxTGEiIiKWKUxERMQyhYmIiFimMBEREcsUJiIiYtn/B4uWHiLieI1gAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.groupby('TIME')['PASTA'].sum().reset_index().plot.scatter(y='PASTA',x='TIME')" ] }, { "cell_type": "code", "execution_count": null, "id": "f96da096-2161-4afa-8eea-c1bc89d97cba", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 5 }